En la figura observe que los puntos (2 , 1) y (-2\, ,\, \frac{1}{2}) equidistan de los extremos de los segmentos a los cuales pertenecen \overline{RS} y \overline{PQ}, respectivamente.
Para el segmento horizontal \overline{RS}, la abscisa del punto (2 , 1) es la semisuma de las abscisas de los extremos y la ordenada se mantiene. Para el segmento vertical \overline{PQ}, la ordenada del punto (-2\, ,\, \frac{1}{2}) es la semisuma de las ordenadas de los extremos y la abscisa se mantiene.
Este mismo concepto puede aplicarse para otros segmentos de recta. Sean P_{1}(x_{1},y_{1}) las coordenadas de un extremo y P_{2}(x_{2},y_{2}) las coordenadas del otro extremo, tal como se muestra en la siguiente figura.
Con P_{1} (-3, -2) y P_{2} (5, 3) se verifica que:
\frac{x_{1}+x_{2}}{2}=\frac{-3+5}{2}=1
\frac{y_{1}+y_{2}}{2}=\frac{-2+3}{2}=\frac{1}{2}
Es decir, las coordenadas del punto M son (1, \frac{1}{2}), el cual equidista de P_{1} y de P_{2}. A continuación se enunciará y demostrará un teorema con el que se generaliza este resultado.
Teorema (Punto medio de un segmento de recta)
Si las coordenadas de los extremos del segmento \overline{P_{1}P_{2}} son P_{1}(x_{1},y_{1}) y P_{2}(x_{2},y_{2}), entonces las coordenadas del punto medio M de \overline{P_{1}P_{2}} son:
\left ( \frac{x_{1}+x_{2}}{2}\, ,\, \frac{y_{1}+y_{2}}{2} \right )
Demostración:
En la ecuación de la recta L que contiene a los puntos P_{1}(x_{1},y_{1}) y P_{2}(x_{2},y_{2}) es:
y-y_{1}=\left ( \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \right )(x-x_{1})
Debido a que el punto M(x_{0},y_{0}) pertenece a la recta L, tenemos:
x_{0}-y_{1}=\left ( \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \right )(x_{0}-x_{1})
\Rightarrow x_{0}=\left [\left ( \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \right )(x_{0}-x_{1}) \right ]+y_{1} (1)
Como M(x_{0},y_{0}) es el punto medio entre P_{1} y P_{2}:
d(P_{1},M)=d(M,P_{2})
Aplicando la definición de distancia entre dos puntos, tenemos:
\sqrt{(x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}}=\sqrt{(x_{2}-x_{0})^{2}+(y_{2}-y_{0})^{2}}
Elevando al cuadrado y transponiendo términos:
(x_{1}-x_{0})^{2}-(x_{2}-x_{0})^{2}=(y_{2}-y_{0})^{2}+(y_{1}-y_{0})^{2}
Factorizando:
\left [(x_{1}-x_{0})+(x_{2}-x_{0}) \right ]\left [(x_{1}-x_{0})-(x_{2}-x_{0}) \right ]
=\left [(y_{2}-y_{0})+(y_{1}-y_{0}) \right ]\left [(y_{2}-y_{0})-(y_{1}-y_{0}) \right ]
Simplificando:
\left [ (x_{1}+x_{2})-2x_{0} \right ](x_{1}-x_{2})=\left [ (y_{1}+y_{2})-2y_{0} \right ](y_{2}-y_{1})
Se reemplaza el valor de y_{0} descrito por la ecuación (1), y se obtiene:
\left [ (x_{1}+x_{2})-2x_{0} \right ](x_{1}-x_{2})
=\left [ (y_{1}+y_{2})-2\left (\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \right )(x_{0}-x_{1})-2y_{1} \right ](y_{2}-y_{1})
A continuación se despeja x_{0}:
\left [2x_{0}- (x_{1}+x_{2}) \right ](x_{2}-x_{1})
=\left [ (y_{1}+y_{2})-2\left (\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \right )(x_{0}-x_{1})-2y_{1} \right ](y_{2}-y_{1})
\left [2x_{0}- (x_{1}+x_{2}) \right ](x_{2}-x_{1})^{2}
=\left [ (y_{1}+y_{2})({x_{2}-x_{1}})-2({y_{2}-y_{1}})(x_{0}-x_{1})-2y_{1}({x_{2}-x_{1}}) \right ]
(y_{2}-y_{1})
2x_{0}(x_{2}-x_{1})^{2}-(x_{2}-x_{1})(x_{2}-x_{1})^{2}
=(y_{2}+y_{1})(y_{2}-y_{1})(x_{2}-x_{1})-2(y_{2}-y_{1})^{2}(x_{0}+x_{1})
-2y_{1}(x_{2}+x_{1})(y_{2}+y_{1})
2x_{0}(x_{2}-x_{1})^{2}+2(y_{2}-y_{1})^{2}(x_{0}-x_{1})
=\left [ (y_{2}+y_{1})(y_{2}-y_{1})(x_{2}-x_{1})-2y_{1}(y_{2}-y_{1})(x_{2}-x_{1}) \right ]
+(x_{1}+x_{2})(x_{2}-x_{1})^{2}
2x_{0}(x_{2}-x_{1})^{2}+2x_{0}(y_{2}-y_{1})^{2}-2x_{1}(y_{2}-y_{1})^{2}
=\left [ (y_{2}-y_{1})(x_{2}-x_{1})(y_{2}+y_{1}-2y_{1}) \right ](x_{1}-x_{2})(x_{2}-x_{1})^{2}
2x_{0}(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}
=(y_{2}-y_{1})(x_{2}-x_{1})(y_{2}-y_{1})+(x_{1}+x_{2})(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}
2x_{0}\left [(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} \right ]
=(y_{2}-y_{1})^{2}(x_{2}-x_{1})+(x_{1}-x_{2})(x_{2}-x_{1})^{2}+2x_{1}(y_{2}-y_{1})^{2}
2x_{0}\left [(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} \right ]
=\left [ (y_{2}-y_{1})^{2}(x_{2}-x_{1})+2x_{1}(y_{2}-y_{1})^{2} \right ]+(x_{1}+x_{2})(x_{2}-x_{1})^{2}
=\left [ (y_{2}-y_{1})^{2}(x_{2}-x_{1})+2x_{1}(y_{2}-y_{1})^{2} \right ]+(x_{1}+x_{2})(x_{2}-x_{1})^{2}
2x_{0}\left [(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} \right ]
=\left [ (y_{2}-y_{1})^{2}(x_{2}-x_{1}+2x_{1}) \right ]+(x_{1}+x_{2})(x_{2}-x_{1})^{2}
2x_{0}\left [(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} \right ]
=(y_{2}-y_{1})^{2}(x_{1}-x_{2})+(x_{1}+x_{2})(x_{2}-x_{1})^{2}
2x_{0}\left [(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} \right ]=(x_{1}+x_{2})\left [(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} \right ]
Simplificando el factor \left [(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} \right ] de ambos miembros, se tiene: 2x_{0}=x_{1}+x_{2}.
Luego, x_{0}=\frac{x_{1}+x_{2}}{2}
Para encontrar y_{0} se reemplaza en (1):
y_{0}=\left [ \left ( \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \right ) \left ( \frac{x_{1}+x_{2}}{2} -x_{1}\right )\right ]+y_{1}
y_{0}=\left [ \left ( \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \right ) \left ( \frac{x_{1}+x_{2}-2x_{1}}{2} \right )\right ]+y_{1}
y_{0}=\left [ \left ( \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \right ) \left ( \frac{x_{2}-x_{1}}{2} \right )\right ]+y_{1}
y_{0}=\frac{y_{2}-y_{1}}{2}+y_{1}
y_{0}=\frac{y_{2}-y_{1}+2y_{1}}{2}
y_{0}=\frac{y_{1}+y_{2}}{2} \therefore M=\left ( \frac{x_{1}+x_{2}}{2}\, ,\, \frac{y_{1}+y_{2}}{2} \right )
Con esto se demuestra que el punto M equidista de los extremos del segmento \overline{P_{1}P_{2}}.
Ejemplo.
Si M es el punto medio de \overline{AB}, donde (-4 , -2) son las coordenadas de A y (2 , 1) son las coordenadas de M, determine las coordenadas de B.
Solución:
Sean (x_{2},y_{2}) as coordenadas de B. Por el teorema, 2=\frac{-4+x_{2}}{2} y 1=\frac{-4+y_{2}}{2}.
Despejando se obtiene x_{2}=8, y_{2}=4. Las coordenadas de B son (8, 4).
No hay comentarios.:
Publicar un comentario